Bug o’the Week – The Twelve (or so) Bugs of Christmas

Bug o’the Week
by Kate Redmond

The Twelve (or so) Bugs of Christmas

Season’s Greetings, BugFans,

It’s time to celebrate a dozen (or so) of the beautiful bugs that posed for the BugLady this year (and that have already graced their own episodes).

This GREAT SPANGLED FRITILLARY on the aptly-named butterfly weed.

EUROPEAN MANTIS – the BugLady intercepted this mantis as it was attempting to cross the road and moved it to a friendlier spot.  The tiny bulls-eye in its tiny armpit tells us that it’s a European, not a Chinese mantis.  Both are non-native, invited to God’s Country by gardeners who buy them and release them as pest control (alas, to a mantis, a honey bee looks as tasty as a cabbage worm). 

When fall freezes come, they die, leaving behind ooethecae (egg cases) that look like a dried blob of aerosol shaving cream https://bugguide.net/node/view/2248160/bgimage).  Eggs in ooethecae can survive a mild winter here but not a Polar Vortex; they hatch in spring https://bugguide.net/node/view/73199/bgimage.  Every fall, The BugLady gets asked if it’s possible to keep a pet mantis alive in a terrarium over the winter.  Short answer – No – its biological clock is ticking pretty loud.

GRAY FIELD SLUG – it was an unusually hot and muggy day, a day when the cooler air above the Lake did not quite reach inland (15 yards) to the BugLady’s front door.  She glanced out and saw a gray field slug extended at least six inches on the storm door.  For more info on gray field slugs, see https://uwm.edu/field-station/bug-of-the-week/gray-field-slug-2-25-2019/.

CANDY-STRIPED LEAFHOPPER – when a spectacular insect picks an equally spectacular perch.  What a treat!

A BROWN-MARMORATED STINK BUG shared the hawk tower with the BugLady on a cool day in late October.  They’re a huge pest in the East because they eat orchard crops in summer and hole up/stink up in your house/closets/attics/coat pockets/boots in winter, and they’re becoming more numerous here.  Remember – not every brown stink bug is a BMS – look for the pale stripes on the antennae and on the legs.

ORANGE SULPHURS are very common, and they don’t put on airs, they’re just quietly beautiful.

TACHINID FLY – when the BugLady thinks about Tachinid flies, she pictures the bristly, house-fly-on-steroids species that frequent the prairie flowers in late summer, but tachinid flies also come in “tubular.”  The larvae of this one, in the genus Cylindromyia, make a living by parasitizing some moths and grasshoppers and a few species of predatory stink bugs (for which efforts they are not appreciated, because the predatory stink bugs are busy preying on plant pests).  The adults, which are considered wasp mimics, feed on nectar. 

EBONY JEWELWINGS are frequent flyers on these pages.  The spectacular males usually have a metallic, Kelly-green body, but some individuals, in some light, appear royal blue.

SHAMROCK ORBWEAVER – the BugLady loves the big Argiope and Araneus orbweavers – tiny when they hatch in spring https://bugguide.net/node/view/1141628/bgimage, they grow slowly throughout the summer until they reach a startling size.  Most go through the winter in egg cases – some hatch early but stay inside and ride out the winter in the case, eating yolk material and their siblings, and others hatch in spring.  They emerge from the egg sac, and after a few days, balloon away in the breezes.  Page through https://bugguide.net/node/view/11644/bgimage to see all the colors Shamrock orbweavers come in (and see why, like the Marbled orbweaver, they’re sometimes called Pumpkin orbweavers).  

SKIMMING BLUET – note to self – ask insects to pose on the very photogenic leaves of Arrow Arum. 

RED-VELVET MITE – the BugLady is frequently struck by the fact that the weather data we rely on was measured by instruments inside a louvered box that sits five feet above the ground, but the vast majority of animals – vertebrate and invertebrate alike – never get five feet off the ground in their lives.  The weather they experience depends on microclimates created by the vegetation and topography in the small area where they live.  Red velvet mites search for tiny animals and insect eggs to eat; their young form temporary tick-ish attachments to other invertebrates as they go through a dizzying array of life stages (OK – prelarva, larva, protonymph, deutonymph, tritonymph, adult).  Read more about them here https://uwm.edu/field-station/bug-of-the-week/red-velvet-mite-again/.

BUSH KATYDID – what child is this?  A nymph of a bush katydid (Scudderia). 

ANTS WITH APHIDS – while shepherds watched their flocks at night……  Some kinds of ants “farm” aphids and tree hoppers, guarding them from predators, guiding them to succulent spots to feed, and “milking” them – harvesting the sweet honeydew that the aphids exude from their stern while overindulging in plant sap.

And an EASTERN PONDHAWK in a pear tree.

Whatever Holidays you celebrate, may they be merry and bright and filled with laughter.

Kate Redmond, The BugLady

Bug of the Week archives:
http://uwm.edu/field-station/category/bug-of-the-week/

Bug o’the Week – Blue Blow Fly

Bug o’the Week
by Kate Redmond

Blue Blow Fly

Howdy BugFans,

It’s gotten cold here in God’s Country – abruptly – with overnight lows in the high teens/low twenties, and daytime highs below freezing.  The water in the birdbath froze solid for a few nights in a row before the BugLady dusted off her heated birdbath, and while she was installing it, several of these large flies were buzzing around on the sunny outside walls of her cottage.  This is one tough fly!

There are more than the usual number of these hefty flies inside her cottage this fall, too, and she suspects there’s a connection between their persistence and the woodchuck that shuffled off its mortal coil under her floorboards in October (on the bright side, now she can fill the hole under the house without worrying about killing the woodchuck). 

What’s a Blow fly?  Blow flies and bottle flies are members of the family Calliphoridae.  Their lifestyles can be off-putting (hint – they’re sometimes called “filth flies”) (the BugLady acknowledges that there may be a certain “ick” factor here).  Females probably use chemical and visual signals to locate the flesh, carrion, wounds, orifices, and/or mammal poop on which they oviposit; the eggs hatch quickly and the larvae (maggots) feed on/in their often-odiferous milieu.  The maggots have to compete for food with the larvae of other insect species, and they must dodge the jaws of carrion beetles, spiders, birds, and frogs.  They pupate in the ground.   

The name “Blow fly” comes from the days of Shakespeare, when a piece of meat occupied by maggots was said to be “fly blown.”

Adult flies often feed on nectar.  Some species of plants (like Pawpaws) have developed especially stinky flowers in order to attract them, and according to The Missouri Department of Conservation website’s Blow fly page, they’re attracted to “some tropical arum species you may see at a botanical garden, and cactuslike stapelia houseplants from South Africa, whose flowers look like giant open sores.” Yes, pictures are available online.

Blow flies have – literally – medical applications, both historically and in the present day.  Says Michael J. Raupp, Extension Entomologist at the University of Maryland, in his Bug of the Week blog (the original Bug of the Week!), “During the American Civil War, surgeons noticed that blow flies often infested the grievous wounds of soldiers. Physicians were surprised to see wounds of maggot-ridden soldiers healing more rapidly and with fewer complications than injuries of soldiers without maggots. Many blow fly larvae consume dead and dying tissues rather than healthy ones. Furthermore, they secrete potent chemicals that kill harmful bacteria and aid in the healing process. Using blow fly larvae to treat wounds is called maggot therapy.” 

And, as CSI fans know – forensic entomologists have charted down to the minute all the permutations in the chronologies of some blow fly species in order to estimate how long a dead body has been dead.  

Though they can spread some nasty germs (if those germs are present, which they often are not), they don’t bite, and they are vital members of Nature’s clean-up crew.  Raupp calls them “heroes of recycling.” 

BLUE BLOW FLIES (Calliohora vicina) (“calliphora” means “bearer of beauty”) can be seen in cool, shady habitats around the globe, primarily in the Northern Hemisphere, but they’re also found in scattered locations in the Southern Hemisphere.  They’ve been recorded in South Africa and uncommonly in Australia, where they’re called European blow flies.  Wikipedia says that they probably travel by the world by airplane.

Females lay eggs – as many as 300 – on a suitable substrate, and if the humidity is high enough they hatch quickly, but they crawl away to find drier conditions when it’s time to pupate.  The larval stage lasts about three days, depending on temperature, and the entire life cycle is about 20 days, most of it spent as a pupa. 

Sources say that adult Blue blow flies are considered “efficient pollinators,” especially of crops like carrots.

Despite the cold, there are still bugs out on our landscapes (and inside, too – the BugLady recently photographed a Bridge spider in her storage unit, and she found an earwig on her sink, but she’s pretty sure that it, like the tree frog that was in the shower, came in when she brought the geraniums inside for the winter).

Kate Redmond, The BugLady

Bug of the Week archives:
http://uwm.edu/field-station/category/bug-of-the-week/

Bug o’the Week – Two Enigmatic Insects

Bug o’the Week
by Kate Redmond

Two Enigmatic Insects

Howdy, BugFans,

In her program about insect Natural History, the BugLady says to the audience “so – we’ve been studying insects for hundreds of years – we’ve got it all nailed down, right?”  Sure.  The BugLady has had some interesting adventures with insects this year.  Even if she can identify them (a big “if” – the X-Files are bursting), not all of them lead transparent lives (“What is it?” should, after all, not be the last question we ask about an organism, it should be the first, and the answer helps open a bunch more doors).  The BugLady frequently writes about bugs who are caught in a classification dust-up.  Here are two poster children for “temporarily displaced” insects.

THE BRACKEN BORER MOTH (maybe) 

When the BugLady photographed this beautiful moth on her back porch rail in mid-September, she knew that it was in the genus Papaipema (the borer moths) (in the Owlet moth family Noctuidae), but which species?  Caterpillars of a few Papaipema species are somewhat generalist feeders, but many are highly specific about host choice, as is evidenced by names like Blazing star borer, meadow rue borer moth, pitcher plant, burdock, iron weed, hop, and rattlesnake master borer, Joe-Pye, aster, columbine, sunflower, coneflower, turtlehead, royal fern, and cinnamon fern borer, and more (there are 50 species). 

It’s a genus of moths that flies and reproduces in late summer and early fall and that are generally found near their host species.  The eggs overwinter and hatch in spring, and the modus operandi of their rarely-seen caterpillars https://bugguide.net/node/view/1127727 is to bore into the roots, rhizomes, and/or stems of their (non-woody) host plants, feed in seclusion, pupate in summer, and emerge in fall.  Bugguide.net remarks that “Many species are rare or locally distributed. Numbers have generally declined since historical times due to loss of wetland and prairie habitat, and the resulting scarcity of particular food plants upon which some species depend (the names of various Papaipema species appear on a number of state lists of “species in greatest need of conservation”).”  Wagner, et al, in Owlet Caterpillars of Eastern North America write that “the genus seems to be speciating rapidly as evidenced by the number of species that are known to be geographically localized….  As might be expected of a large genus with specialized habits, a number of species seem to be slipping toward extinction.  Close to a third of Connecticut’s 30 species have not been seen in more than three decades…

So, who was BugLady’s visitor?  It looked an awful lot like the Bracken Borer moth (Papaipema pterisii) (https://bugguide.net/node/view/1443121/bgimage), whose food plant is Bracken fern (https://illinoiswildflowers.info/grasses/plants/bracken_fern.htm).  The problem was that the BugLady hasn’t seen any bracken fern in her neighborhood, but she and the moth were 20 feet away from lots of Ostrich fern.  Is there an Ostrich fern borer? 

She found a picture of a “potential” Ostrich fern borer https://guides.nynhp.org/ostrich-fern-borer-moth/, and the plot thickened.  It hasn’t really been described or named yet (it’s one of several possibly-emerging new Papaipema species), but the DNRs and Natural Heritage Departments of a number of Northeastern states refer to it as “unnamed Papaipena species #2” or call it “Papaipema sp. 2 nr. Pterisii,” and they’re keeping an eye on it.  It’s described as being larger and more richly colored than, and flying a bit later in the fall than the Bracken fern borer.  It feeds on Ostrich fern (first in the stem and later in the roots), and its pupae are found in the soil at the base of Ostrich fern stalks.  You can’t tell the difference between it and the Bracken borer in a photograph.

But what is its status in Wisconsin, the BugLady wondered?  She asked PJ, and PJ asked Les, and Les recommended sticking with Bracken borer for now – it’s not known if the Bracken borer might be using more than one host, and identifications shouldn’t be made just on the basis of host plants.  It is likely not a valid species, said Les, but a publication due out in early 2025 may shed more light on it.  Thanks, Gentlemen.  Stay tuned.

YELLOW-FACED SWIFTWING – Version 1  

How do you tell a fly from a bee?  Easy – hymenopterans (bees, wasps, etc.) have four wings and flies have two.  Except that, hymenopterans typically perch with their wings more-or-less stacked, and very few are cooperative enough to spread their wings so that we can count them.  The BugLady recognized this bumble bee mimic as a fly because of its (wimpy) antennae and because of the large, flattened eyes https://bugguide.net/node/view/1838687/bgimage.  One entomologist calls them “wanna bees.”  Here’s a bumble bee for comparison https://bugguide.net/node/view/1221268/bgimage.

It’s a syrphid/hover/flower fly (family Syrphidae) in the genus Volucella (the Swiftwings), a genus that according to most internet sources has four species in North America.  Probably a Yellow-faced Swiftwing (Volucella facialis) (if it’s not, it’s an Eastern Swiftwing (V. evecta).  Members of the genus look a little “hippy” (no judgement) (“broad-bodied,” says one source), have triangular faces, and their “arista” (the bristle that juts off of the antenna) is plumose (feathery) https://bugguide.net/node/view/1870769/bgimage.  Here’s a glamour shot https://bugguide.net/node/view/1494989/bgimage

YELLOW-FACED SWIFTWING – Version 2   

So, the BugLady had settled on the narrative above, but then she found an article from the University of California, written in 2020, that pretty much upended it.  According to entomologist Andrew Young, there is only one species of Volucella fly in North America, and it’s Volucella bombylans, whose range stretches across Eurasia (it’s called the Bumblebee hover fly in England), the Near East, and North America.  There was no suggestion of whether it had or had not immigrated here from someplace else.  All the “other” Volucellas in this country, says Young, are simply varieties of V. bombylans, and they probably exist as a “species complex,” a group of closely-related species that look so much alike that we can’t differentiate among them and that may be able to hybridize.  Hold your horses, say other biologists, there are no species complexes, it’s just that our meager observational skills don’t yet allow us to detect their differences.  Scott King, in his The Flower Flies of Minnesota (2021), writes that “the Volucella bombylans species complex was only recently unraveled into three Nearctic [New World] species, two of which [V. facialis and V.evecta] live in Minnesota.

Whatever the name, the life histories of these flies is similar – they lay their eggs in the nests of social wasps and especially of bumble bees (whose nests they have no trouble entering).  When the eggs hatch, the fly larvae are detritivores, feeding on organic debris in the nest, including dead bees, and on bee larvae, too, and some eat bee and wasp pupae within the nest.  They are inquilines – animals that live in another animal’s space (from the Latin word “inquilinus,” meaning tenant or lodger).  Some inquilines don’t eat their hosts, but some do.  The esteemed French naturalist and entomologist Henri Fabre (1823 to 1915) wondered how the larvae could survive inside a wasp nest: “What has it to make itself thus respected?  Strength?  Certainly not.  It is a harmless creature which the Wasp could rip open with a blow of her shears, while a touch of the sting would mean lightening death.” 

Adult Volucella are nectar feeders that, says Wikipedia, like to sun themselves on leaves, and it also says that the genus is strongly migratory and that males are often territorial.  Syrphids are important pollinators. 

Kate Redmond, The BugLady

Bug of the Week archives:
http://uwm.edu/field-station/category/bug-of-the-week/

Bug o’the Week – Black Horse Fly redo

Bug o’the Week
by Kate Redmond

Black Horse Fly redo

Howdy, BugFans,

The BugLady has gotten a few reports of these magnificent flies recently, so here’s an episode from 2018, with some new words and thoughts and links added.

People often ask the BugLady what her favorite bug is, and although there’s a crowded field for second place, the Tiger Swallowtail butterfly is the hands-down winner.  Most Impressive Bug?  The Black horse fly (Tabanus atratus) (family Tabanidae) certainly ranks high on that list.  It is one, imposing horsefly, and although she knows that it’s (probably) not going to pursue her (they generally stalk non-human mammals), just seeing one gives her a bit of a start.  We visited the Black horse fly in the distant past, very briefly, one of an array of flies, and it’s time to fill in some gaps in its biography.  This fly is not the tiny, humpbacked Black fly that lives near rivers and torments all comers https://uwm.edu/field-station/bug-of-the-week/black-fly-the-bug-the-legend/

Yes, there are larger flies in the neighborhood – some of the robber flies, for example, are longer – but they lack the heft of this fly.  Even the official measurement of 20 to 28 mm (an inch-ish) doesn’t adequately communicate it.  As one bugguide.net correspondent put it: “This is the largest fly I have ever seen, I actually saw two of these at two different locations on the same day. I am guessing it is a horsefly of some sort. A handful of these things ought to be able to carry a horse as a ‘to-go’ meal!”  And as another bugguide.net correspondent said, “I’m assuming this is a female Tabanus atratus? First time I’ve seen one. Not sure I want to see another.”  And as Jess Adams wrote in his blog “Long Leggedy Beasties,” “I’m not sure if they are called horse flies because they feed on horses or because they are the size of horses….”

Indeed, it’s hard to believe that these huge flies (https://bugguide.net/node/view/1114670/bgimage) are not the biggest horseflies on the continent, but they come in a close second to the American horsefly https://bugguide.net/node/view/117708/bgimage, which may hold the World Title.   

Atratus” means “clothed in black,” and one of the common names for this fly is the Mourning fly.  Adults are variously dark gray/black/brownish-purple, with equally dark wings, dark eyes, and antennae that are hooked https://bugguide.net/node/view/1890081/bgimage (in case you still were unsure of your ID).  Males have wrap-around (holoptic) eyes that touch at the top of the head https://bugguide.net/node/view/1494235/bgimage, and females’ eyes are separated (dichoptic) https://bugguide.net/node/view/827314/bgimage.   

It’s been suggested that they’re the infamous “blue-tailed fly” from the folk song “Jimmy Crack Corn” https://bugguide.net/node/view/367846/bgimage (the BugLady expected to find a bunch of common names for this fly, most of them profane, but she didn’t come across any).  They can be a challenge to photograph because their velvety, black color sucks up the light.  Check the phenomenal, final three pictures on the Maryland Biodiversity website https://www.marylandbiodiversity.com/view/9571

Their larvae are pale with dark bands https://bugguide.net/node/view/677968 and may be twice as long as their elders when mature.  They have pointy mouthparts that, like their elders’, can pack quite a punch. 

Though it’s been recorded throughout the Lower 48, the Black horse fly is mostly found east of the Rockies.  Its larvae live in wet/damp places at the edges of wetlands, and the adults are generally found within a mile or so of the ponds they grew up in. 

Females lay their eggs in mounds on wet ground or on sedges and other vegetation above water, and they may deposit three or four such masses https://bugguide.net/node/view/1014993/bgimage (male Black horse flies don’t live for long).  The newly-hatched larvae drop down and dig into the detritus or mud, and they spend two years as larvae. 

According to Werner Marchand in the Monographs of the Rockefeller Institute for Medical Research (1920), “Walsh found his aquatic larvae, on many occasions, ‘amongst floating ‘rejectamenta.’  On one occasion, he found six or seven specimens in the interior of a floating log so soft and rotten that it could be cut like cheese.”  He goes on to say that “when handled, the larva is, according to Walsh, ‘very vigorous and restless,’ and burrows with great strength between the fingers, and even on a smooth table, walks as fast as any ordinary caterpillar, backwards or forward; when placed in a vessel of water it swims vigorously, twice the length of its body at every stroke...” 

Rejectamenta” – the BugLady’s new favorite word!

Marchand writes that the larvae can produce sound “…the crackling noise was freely produced by full-grown Tabanus atrata larvae, and … was chiefly heard when the larvae were disturbed and defending themselves with their sharp mandibles.  The coincidence of the two phenomena was so close that I am bound to assume that the sound was produced by means of the mandibles.”

The larvae climb up onto drier ground to pupate in the soil.  Marchand says that “the pupa state lasts but a few days, and before the emergence of the fly the pupa is pushed to the surface of the ground by means of the bristles and thorns of the abdomen, with bending movements of the body.”  For more about what happens in a pupal case, see http://uwm.edu/field-station/pupal-cases/.

Much of what is written about Black horse flies concerns their food and feeding habits.  The larvae are active predators.  Marchand again: “On September 2, 1863, he found a nearly full-grown larva among floating rejectamenta, and between that date and September 23, this larva devoured ‘the mollusks of eleven univalves’ (genus Planorbus) from one-half to three-fourths of an inch in diameter; and on three separate occasions observed it work its way into the mouth of the shell.”  They eat other aquatic invertebrates, too, and small vertebrates, and even their Tabanid brethren.  Jones and Anthony, in The Tabanidae (Diptera) of Florida write “medium to large-size larvae of Tabanus atrata are extremely aggressive.  When two or more are placed in the same container, only a short time usually elapses before all are dead except one.  The survivor will feed on the victim if hungry, but generally it appears that a larva kills to avoid being killed.” 

Like mosquitoes, female tabanids need a blood meal in order to maximize egg production.  Both males and females feed on nectar from flowers (he lacks her piercing mouthparts), but when she is in reproductive mode, a female will stalk livestock and other large, dark mammals by their movement and by their CO2 trail.  She punctures her victim’s skin with a pretty sophisticated set of blades (modified mandibles and maxillae) and is classed as a sanguivore – more specifically, she is a telmophage, because she laps up the resulting pool of blood instead of sucking it (unlike mosquitoes, who are “vessel feeders” or solenophages that employ a “syringe and pump”).  Got it?  

Although humans are generally not targets, a bite is, apparently, unforgettable.  When present in numbers, these flies can be a problem for livestock due to blood loss, distress, and potential disease transmission. 

Several resources pointed out something that the BugLady had never really thought about before – that being a sanguivore, getting a meal by puncturing an animal that is larger and that takes exception to being punctured, is a dangerous way to make a living.  The blood is, as one researcher points out, “not freely given,” and a potential victim may simply swat its tormentor away or may eat it.  The BugLady once went on a canoe trip on Wisconsin’s Oconto River during which she was accompanied by clouds of deer flies and learned to swat them without breaking stroke, and after nine hours on the water, there was a layer of dead deer flies over the bottom of the canoe (our blood was not freely given, either) (the 50 yards of whitewater just before the pull-out spot were pretty memorable, too). 

Another down-side of blood-feeding is that depending on the body temperature of the “pierce-ee,” the cold-blooded piercer is courting temperature shock by ingesting a substance that is much warmer than it is. 

The “take-home” is that sanguivores need to do their work in a hurry (solenophages tend to get in and out more quickly and quietly than telmophages), and that the nutrition received needs to be worth the energy – and risk – required to extract it. 

Kate Redmond, The BugLady

Bug of the Week archives:
http://uwm.edu/field-station/category/bug-of-the-week/

Bug o’the Week – Slices of Spring

Bug o’the Week
by Kate Redmond

Slices of Spring

Howdy, BugFans,

The BugLady and her camera have been out scouring the uplands and wetlands for insects that will sit still long enough to have their portrait made.  Many of today’s bugs have starred in their own BOTWs over the years, and you can find them by Googling “UWM Field Station followed by the name of the insect.  Her gut continues to tell her that there simply aren’t as many insects to point her camera at as there were a decade ago.

What did she find in April and May?

WOODLAND LUCY (Lucidota atra), aka the Black firefly (atra means black).  If a lightning bug doesn’t light, is it still a Lightning bug?  Yup.  Most lightning bugs flash their species-specific light signals at females by night, but some, like the Woodland Lucy, are day flyers (the BugLady starts seeing them in swamps in May, but she usually doesn’t see a light show by their nocturnal relatives until the very end of June).  It would be a waste of energy to try to produce a light that competes with the sun, so diurnal lightning bugs communicate via pheromones (perfumes).  But, all fireflies make light at some point in their lives, and always as a larva (and even the adult Woodland Lucy makes a weak light for a brief time after emerging as an adult).   

Who says “lightning bug” and who says “firefly?”  Lightning bug is heard most often in the South and Midwest, and firefly belongs to New England and the West (and Southeastern Wisconsin is close to the border of the two).  Someone did a study and hypothesized that people who live in wildfire country prefer firefly, and people who live in thunderstorm country say lightning beetle.  The BugLady likes the alternate theory – that you call them whatever your Grandmother called them.

DISONYCHA BEETLE – isn’t this a neat beetle!  The BugLady photographed another member of the genus years ago when she was photographing visitors to her pussy willow shrub.  It’s in the (huge) leaf beetle family Chrysomelidae, many of whose members are pretty specific about the host plants for their larvae.  This one is (probably) a member of the confusing Smartweed Disonycha bunch.  

GROUSE LOCUSTS are in the family Tetrigidae (the pygmy grasshoppers), and at a half-inch and less when full grown, pygmy they are!  The BugLady usually sees them in wetlands, and some are actually known to swim.  They feed on tiny diatoms and algae and aquatic vegetation at the water’s edge.

A CENTIPEDE works the boardwalk at Spruce Lake Bog in April.

GROUND BEETLE LARVA – Ground beetles (family Carabidae) are a bunch of mainly nocturnal, sometimes-sizeable, mostly predaceous beetles.  Some of the big ones have no-nonsense names like Fiery Searcher and Caterpillar Hunter, and although they are called Ground beetles, they may climb trees to find their prey.  They’re long-lived, spending a year or two as larvae and then two or three more as adults.  No – the BugLady was not inclined to pick this one up.   

The WHITE-STRIPED BLACK MOTH (Trichodezia albovittata) is a small (1” wingspan) day-flying moth that’s often mistaken for a butterfly.  It’s found in wetlands because its caterpillar’s food is Impatiens/Jewelweed/Touch-me-not.  Like other members of the moth family Geometridae, it has tympanal organs (ears) at the base of its abdomen so that it can hear the echolocation calls of bats.  Since it’s diurnal, its ears are superfluous, but it can hear ultrasound (which suggests to evolutionary biologists that its day-flying habit is a recent one). 

CHALK-FRONTED CORPORALS are one of our earliest dragonflies – the BugLady recalls seeing recently-emerged corporals by the hundreds over a dirt road on warm, spring days.

DADDY LONGLEGS (aka Harvestmen) are not true spiders, though they do have eight legs.  The best description that the BugLady has read is that lacking a sharp division between their two body parts (cephalothorax and abdomen), they look like Rice Krispies with legs.  This one is well-camouflaged on the fertile stalk of a cinnamon fern.

The BugLady may have to have this engraved on her gravestone (oh wait, she’s being scattered) – DADDY LONGLEGS DO NOT BITE PEOPLE!  Also, counter to both urban and rural legend, they are NOT the most venomous animal on earth!!!  The BugLady does not care what your cousin told you, or the person who claims to be allergic to their bite.  They have tiny jaws, and unlike the true spiders, they do not pierce their prey and then pump in chemicals from venom glands (no venom glands) (and they have no stinging apparatus).  They just sit there and chew off tiny (tiny) pieces.  Got it?

The BEAUTIFUL BEE FLY (Bombylius pulchellus) truly is (pulchellos means “little beauty”)!  This small fly (maybe ¼”) was photographed in a wetland in mid-May.  Bee fly larvae are parasitoids of a variety of insect eggs and larvae – this one targets the sweat bees, which are among our earliest pollinators (not to worry – the system is in balance).

CRANE FLY – there are a number of families of crane flies, plus some near-relatives, and they are often collectively called daddy longlegs (though they’re not spiders) and mosquito hawks and skeeter-eaters (though they don’t catch or eat mosquitoes).  What they do, is look like giant mosquitoes when they land on the other side of your window screen at night https://bugguide.net/node/view/2360312/bgimage, but they’re completely harmless.  The “crane” in crane fly reflects their long, long legs – they’re somewhat awkward flyers and even more awkward landers.  Like the Daddy longlegs, they’re reputedly extremely venomous (and now it’s time to introduce the third member of our “daddy longlegs trio,” the cellar spider.  Crane flies are thought to be venomous because they look like cellar spiders (https://bugguide.net/node/view/2170770/bgimage), but, alas, cellar spiders only have very weak venom). 

How do these things get started, anyway?

SOLDIER FLY – it’s always a little startling to come across a lime-green fly! 

This VIRGINIA CTENUCHA MOTH CATERPILLAR was photographed in April, but the BugLady has found them walking around on mild winter days.  The cute caterpillar will morph into a stunning moth https://bugguide.net/node/view/1036503/bgimage that looks butterfly-ish until it lands on a leaf and immediately crawls underneath.  Despite its name, it’s a moth with more northerly affiliations. 

The (great) Minnesota Seasons website lists three defense strategies:

  • Aposematism: The metallic blue color of the thorax and abdomen mimics wasps which may be noxious to predators.
  • Sound production: A specialized (tymbal), corrugated region on the third section of the thorax (metathorax) produces ultrasonic sounds which interfere with (“jam”) the sonar of moth-eating bats.
  • Pyrrolizidine alkaloid sequestration: Caterpillars acquire and retain naturally produced toxic chemicals (pyrrolizidine alkaloids) from the plants they eat.

RED-SPOTTED PURPLE CATERPILLARS are hard to distinguish from those of the very-closely-related Viceroy and White Admiral caterpillars, and their food plants overlap, too.  The caterpillars overwinter in a leaf that’s still attached to the tree, rolled up and fastened with silk. 

Red-spotted Purple?  The purple part https://bugguide.net/node/view/1791309/bgimage, and the red-spotted part https://bugguide.net/node/view/1881731/bgimage

HOBOMOK SKIPPERS (once called the Northern Golden Skipper) are an early butterfly, often decorating the wild geraniums that bloom by the bushel in May.  One source says that they are strong flyers that take off quickly when startled.  Amen!  They are a butterfly of woodland, wetland and grassland edges, where males perch in the sun and fly out to chase intruders.

“Hobomok” is a nod to an early Wampanoag chief.    

CRAB SPIDER on White trillium – as we all know, the BugLady has a thing for crab spiders because of their ability to hide in plain sight.  This one was photographed in early May. 

Go outside – Look for Bugs!

Kate Redmond, The BugLady

Bug of the Week archives:
http://uwm.edu/field-station/category/bug-of-the-week/

Bug o’the Week – Bugs without Bios XIX

Bug o’the Week
by Kate Redmond

Bugs without Bios XIX

Howdy, BugFans,

Bugs without bios – those humble (but worthy) bugs about whom little information is readily available.  Today’s bugs check those boxes as species, but they have something in common – their lifestyles are similar to those of close relatives who have already starred in their own BOTW.

The BugLady found this PREDACEOUS DIVING BEETLE (Hydacticus aruspex) (probably) in shallow water that was so plant-choked that the beetle had trouble submerging.  Diving beetles are competent swimmers, tucking their two front pairs of legs close to their body and stroking with powerful back legs.  When they submerge, they carry a film of air with them to breathe, stored under the hard, outer wing covers (elytra).  They can fly, too, though they mostly take to the air at night.

As both larvae and adults, Predaceous diving beetles are aquatic and carnivorous, dining on fellow aquatic invertebrates.  Larvae (called water tigers) grab their meals with curved mouthparts and inject digestive juices that soften the innards, making them easy to sip out (generic water tiger – https://bugguide.net/node/view/49848/bgimage).  They eat lots of mosquito larvae.  Adults grab their prey and tear pieces off.  Not for the faint of heart.   

Hydacticus aruspex (no common name) is one of five genus members in North America and is found across the continent.  It comes in both a striped and a non-striped form https://bugguide.net/node/view/296320/bgimage.  It overwinters as an adult, under the ice, and romance blossoms in spring.  For more information about Predaceous diving beetles, see https://uwm.edu/field-station/bug-of-the-week/predaceous-diving-beetle-revisited/

These spectacular OBLIQUE-WINGED KATYDIDS (probably) were climbing around on Arrow Arum in a wetland that the BugLady frequents.  Katydids are famous singers whose ventriloquistic calls may be heard day and night (though older ears may strain to hear them – test your hearing here https://www.listeningtoinsects.com/oblong-winged-katydid).  They “sing” via “stridulation” – friction – in their case, by rubbing the rigid edge of one forewing against a comb-like “file” on the other (the soft, second set of wings is only for flying, and they do that well).  They hear with slit-like tympana on their front legs.  Most Katydids are vegetarians, but a few species are predaceous.

Oblong-winged Katydids (Amblycorypha oblongifolia) are “False katydids” (here’s a True katydid https://bugguide.net/node/view/2207342/bgimage) in the Round-headed katydid genus.  They are found in woods, shrubs, and edges throughout the eastern US, often in “damp-lands,” often on brambles, roses, and goldenrods.  The dark, mottled triangle on the top of the male’s thorax is called the “stridulatory field” – a rough area that is rubbed to produce sound.  Oblong-winged katydids have a large stridulatory field. 

Katydids, both in color and in texture, are remarkably camouflaged – except when they’re not.  Here’s an awesome color wheel of katydids https://entnemdept.ufl.edu/creatures/misc/amblycorypha_oblongifolia.htm

For more information about the large katydids (including the origin of their name), see https://uwm.edu/field-station/bug-of-the-week/katydid-rerun/.

The BugLady came across this cute little MOTH FLY (Clytocerus americanus) (probably) on a day that she couldn’t take an in-focus shot on a bet!  Fortunately, bugguide.net contributors did better https://bugguide.net/node/view/426325/bgimagehttps://bugguide.net/node/view/695589/bgimage.  Despite their name, Moth flies are moths, not flies or weird hybrids.  They are tiny (maybe 1/8”) and hairy, and are weak fliers, and until she saw this one, the only Moth flies she had ever seen were indoors, in the bathroom (where they earn another of their names – “drain flies”).  Species that live outside are, like this one was, often found near wetlands. 

There are only one or two species in the genus Clytocerus in North America, and they have strongly-patterned wings and very hairy antennae.  Not much is known about their habits.  According to Wikipedia, adult Clytocerus americanus feed on “fungal mycelia and various organisms which inhabit wet to moist environments. Larvae are assumed to be detritivores.”

Find out more about moth flies here https://uwm.edu/field-station/bug-of-the-week/moth-fly/

MASON WASP – This is what happens when the BugLady buys garden stakes!  After various small, solitary wasps populate the empty interiors with eggs, the BugLady can’t possibly stick them into the ground! 

As their name suggests, female Mason wasps use mud to construct chambers in preexisting holes to house both their eggs and the cache of small invertebrates that their their eventual larvae will eat. 

The Canadian Mason Wasp (Symmorphus canadensis) suspends an egg from the chamber roof or wall by a thread and then adds 20 or more moth or leaf mining beetle larvae before partitioning it off with a wall of mud and working on the next cell https://bugguide.net/node/view/509856/bgimage.  She leaves a “vestibule” at the end of the tunnel/plant stake between the final chamber and the door plug. 

Heather Holm, in her sensational Wasps: Their Biology, Diversity, and Role and Beneficial Insects and Pollinators of Native Plants, discusses the hunting strategy of genus members: “Symmorphus wasps hunt leaf beetle larvae (Chrysomela); these beetles have glands in their abdominal segments and thorax that emit pungent defensive compounds.  These compounds are derived from the plants that the larvae consume. ….. In addition to using visual cues to find their prey, it is likely that Symmorphus wasps use olfactory means to find the beetle larvae.  Symmorphus males have been observed lunging at Chrysomela larvae, mistaking the larvae for adult females [female mason wasps] that, after capturing and handling prey, smell of the offensive compounds.

Here are two previous BOTWs about mason wasps, each a different genus than the Canadian Mason wasp: https://uwm.edu/field-station/bug-of-the-week/bramble-mason-wasp/ and https://uwm.edu/field-station/bug-of-the-week/four-toothed-mason-wasp/.    

Kate Redmond, The BugLady

Bug of the Week archives:
http://uwm.edu/field-station/category/bug-of-the-week/

Bug o’the Week – The 12 (or 13) Bugs of Christmas

Bug o’the Week
by Kate Redmond

Bug o’the Week The 12 (or 13) Bugs of Christmas

Greetings of the Season, BugFans,

(13 bugs, because once she’s got her selection down to 13, the BugLady just can’t cut one more!)

A Cheery Thought for the Holidays, the average home contains between 32 and 211 species of arthropods (with the lower numbers at higher Latitudes and higher numbers as you head south past the Mason-Dixon Line).  So, while the BugLady is celebrating The 12 (or 13) Bugs of Christmas, most BugFans could rustle up at least that many under their own roofs.  Whether you see them or not, all kinds of invertebrates coexist with us daily, mostly staying under our radar until we surprise each other with a quick glimpse.

Here are a baker’s dozen of the bugs that the BugLady saw in 2023.

BALTIMORE CHECKERSPOT CATERPILLAR – According to one researcher, caterpillars are “essentially bags of macerated leaves.”  What kind of leaves does a Baltimore Checkerspot caterpillar macerate?  The eggs are laid in the second half of summer on, historically, White turtlehead, a native wildflower, and more recently, Lance-leaved plantain has been added as a host plant.  Both plants contain chemicals that make the caterpillars distasteful to birds, though the turtlehead has higher concentrations of them.  The butterflies have adapted to use an introduced plant, but the caterpillars don’t do as well on it (the BugLady has also seen them on goldenrod).  Half-grown caterpillars overwinter, and when they emerge to finish eating/maturing in spring, the turtlehead isn’t up yet, so they eat the leaves of White ash and a few spring wildflowers.   

LEAFCUTTER BEE ON PITCHER PLANT – Bumble bees and Honey bees are listed as the main pollinators of Purple pitcher plants, along with a flesh fly called the Pitcher plant fly (Fletcherimyia fletcheri), a pitcher plant specialist that contacts the pollen when it shelters in the flowers.  But it looks like this Leafcutter bee is having a go at it. 

SEVEN-SPOTTED LADYBUGS had a moment this year; for a while in early summer, they were the only ladybug/lady beetle that the BugLady saw.  Like the Asian multicolored lady beetle, they were introduced from Eurasia on purpose in the ‘70’s to eat aphids.  But (and the BugLady is getting tired of singing this chorus) they made themselves at home beyond the agricultural fields and set about out-competing our native species. 

An Aside: Lots of people buy sacks of ladybugs to use as pest control in their gardens.  The BugLady did a little poking around to see which species were being sold.  Some sites readily named a native species, but most did not specify.  Several sites warned that unless you are buying lab-grown beetles, your purchase is probably native beetles scooped up during hibernation, thus posing another threat to their numbers

SOLDIER FLY LARVA – The BugLady is familiar with Soldier fly larvae in the form of the flattened, spindle-shaped larvae https://bugguide.net/node/view/1800040/bgimage that float at the surface of still waters, breathing through a “tailpipe” and locomoting with languid undulations.  So she was pretty surprised when she saw this one trucking handily across a rock in a quiet bay along the edge of the Milwaukee River.  It appears to have been crawling through/living in the mud. 

COMMON WOOD NYMPH – And an out-of-focus Common Wood Nymph at that.  The BugLady has a long lens, and her arms weren’t quite long enough to get the butterfly far enough away to focus this shot.  And it’s really hard to change lenses with a butterfly sitting on your finger.

FALSE MILKWEED BUG – Milkweed bugs are seed bugs that live on milkweeds, but if you’ve ever seen a milkweed bug that was not on a milkweed (usually on an ox-eye sunflower), it was probably a False milkweed bug.  They’re so easily mistaken for a Small milkweed bug that one bugguide.net commentator said that all of their pictures of Small milkweed bugs should be reviewed.  Here’s a Small milkweed bug with a single black heart on its back bracketed by an almost-complete orange “X” https://bugguide.net/node/view/2279630/bgimage; and here’s the False milkweed bug, whose markings look (to the BugLady) like an almost complete “X” surrounding two, nesting black hearts https://bugguide.net/node/view/35141.  One thoughtful blogger pointed out that although it looks like a distasteful milkweed feeder, it’s not thought to be toxic.  He wondered if this is a case of mimicry, or if the bug once fed on milkweed, developed protective (aposematic) coloration, and then changed its diet?

LARGE EMPTY OAK APPLE GALL – That’s really its name, but “empty” refers to the less-than-solid interior of the gall https://bugguide.net/node/view/54459 (which was made by this tiny gall wasp https://bugguide.net/node/view/260612).  Galls are formed (generically) when a chemical introduced by the female bug that lays the egg, by the egg itself, and later by the larva, causes the plant to grow extra, sometimes bizarre, tissue at that spot.  The gall maker lives in/eats the inside of the gall until it emerges as an adult.  Some galls are made by mites – same principle.

SYRPHID FLIES are pretty hardy.  Some species appear on the pussy willows and dandelions of early spring, and others nectar on the last dandelions of late fall.  This one was photographed on November 17, on a sunny and breezy day with temperatures in the low 40’s, 12 feet off the ground, resting on the BugLady’s “go-bag” (the bag of extra clothes she carries up onto the hawk tower to deal with the wind chill).

WASP WITH SPIDER – The BugLady saw a little flurry of activity near an orbweaver web on her porch one day, but she got it backward.  At first she thought that the spider had snagged the wasp (a Common blue mud dauber), but it was the wasp that hopped up onto the railing with its prey, part of the spider collection she will put together for an eventual larva.

SIX-SPOTTED TIGER BEETLES grace these collections perhaps more than any other insect, because – why ever not!

JUST-EMERGED DAMSELFLY – This damselfly was so recently emerged (possibly from the shed skin nearby) that its wings are still longer than its abdomen (basic survival theory says that you put a rush on developing the parts you might need most).  Will a few of the aphids on the pondweed leaves be its first meal?

This is either a GREEN IMMIGRANT LEAF WEEVIL (Polydrosus formorus https://bugguide.net/node/view/1678834/bgimage) or the slightly smaller (and equally alien) PALE GREEN WEEVIL (Polydrosus impressifrons https://bugguide.net/node/view/1813505/bgimage).  Whichever it is, it’s been in North America for a little more than a century.  Bugguide.net calls them “adventive” – introduced but not well established.  Eggs are laid in bark crevices or in the soil, and the larvae feed on roots.  Adults eat young leaves, buds, and flowers of some hardwood, fruit, and landscape trees but are not considered big pests.  Their lime-green color comes from iridescent, green scales.

And a DOT-TAILED WHITEFACE in a pear tree.

Have a Wonder-full New Year,

Kate Redmond, The BugLady

Bug of the Week archives:
http://uwm.edu/field-station/category/bug-of-the-week/

Bug o’the Week – Two Odd Little Flies

Bug o’the Week
by Kate Redmond

Bug o’the Week Two Odd Little Flies

Greetings, BugFans,

The BugLady loves finding species she’s never spotted before – there are many thousands of insects she has yet to photograph, but that’s a matter of “right time; wrong habitat; more road trips.”  This year’s new bugs were mostly wasps, flies, and katydids – stay tuned.  And, as vintage BugFans know, the combination of the BugLady’s hyperopia (farsightedness) and her camera lenses (first a 50mm macro lens, then a 70, and now a 100mm) lure her into the world of little stuff.

They are in different families, but (besides size), what today’s two flies have in common is a very limited on-line presence.

FLY #1 – Heteromyia prattii

People frequently ask the BugLady about the clouds of midges they see dancing in the air, especially at the start and end of the bug season.  Those are mostly cold-tolerant species of non-biting midges in the family Chironomidae – fragile, mosquito-y-looking flies with long front legs https://bugguide.net/node/view/2260548/bgimage.  When she found this little fly in the brush near a wetland in June – a fly with a husky-looking thorax, bulging front legs, patterned wings, and extraordinary back legs – she was clueless (thanks, as always, PJ). 

It’s in the family Ceratopogonidae, the Biting midges (aka Punkies and No-see-ums).  Googling No-see-ums results in a flood of Extension and Exterminators sites.  Why?  Many female Biting midges sip the blood of reptiles, of humans and other mammals, and even of other insects in order to fuel their egg-laying.  To this end, their mouthparts are adapted for slicing through skin.  Among their targets are humans who are enjoying the outdoors – their bite is painful; the aftermath is irritating; and the lesions may last for weeks if the victim is allergic.  To top it off, some Biting midges can be vectors of disease in humans and livestock, here and abroad (none affect humans in North America).  Males don’t bite, and both males and females are fond of nectar.   

Biting midges are found across the continent and around the world.  Their larvae grow up in moist/wet, sheltered spots, and the adults are found in early summer in woodlands and around wetlands, both saltwater and fresh. 

Heteromyia prattii (no common name) is found in the eastern US and into southern Canada, but most of the dozen or so other genus members are tropical.  Its larvae live in shallow water and wet edges.  Like other Ceratopogonids, the adults are small – about 4mm (¼”-ish).  Here are some better pictures than the BugLady managed https://bugguide.net/node/view/2265258/bgimagehttps://bugguide.net/node/view/1020149/bgimage

About this species, little has been written, but more is known about its tribe, Heteromyiini.  In a paper published in 1978, Wirth and Grogan summarized the natural history of the tribe, going back to early observations of the fly.  They wrote So far as known, the adult females are predaceous on chironomid midges and other smaller, soft-bodied insects,” and they quoted from an 1856 paper “The species whose femora are armed with spines make a prey of other small insects, which they pierce with their sharp proboscis.”  A century later, Downes wrote that “The females of insectivorous Ceratopogoninae (typical genera: Ceratopogon, Stilobezzia, Clinohelea, Palpomyia) feed on small insects that are captured in flight. The prey is almost always the male of species of Nematocera and Ephemeroptera, and it is frequently, and probably typically, captured in the male swarms (mating swarms) that are so often produced in these groups. They thus reach, perhaps almost indifferently, the male swarm of their own or another species and proceed to capture prey.”  His account included a picture of a female Biting midge eating the male she was copulating with.  The larvae feed on invertebrates that are even smaller than they are, newly-hatched midges, and egg masses. 

FLY #2 – Dilophus stigmaterus (no common name)

The BugLady noticed Fly #2 when she was hauling her gear up the stairs of the hawk tower in September.  A few of the goldenrods at the base of the tower were covered with these speedy little flies, but plants not too far away had none. 

They’re in the March fly family Bibionidae, called March flies because many of the species emerge in spring.  If you’ve been to Gulf Coast, you’ve probably encountered swarms of March flies called Love bugs, in flagrante delicto (second meaning) (about Love bugs, bugguide.net says that because they became very numerous very abruptly, “There are a number of popular myths about this species, including that it was a lab creation designed to control mosquitoes.”).   

It’s not surprising that the BugLady saw a bunch of these flies.  March fly larvae live gregariously on/in the ground and under leaf litter (some are found in compost heaps), eating rotting plants and live plant roots and contributing to soil building.  They often emerge as adults synchronously, forming large mating swarms.  Females lay their eggs in small holes that they dig in moist soil.  The adults’ brief lives are focused on romance.  Those species that feed (not all do) eat nectar, pollen, and honeydew, and some March flies are important pollinators, especially of irises and orchids.

Dilophus stigmaterus is sexually dimorphic – males are all black https://bugguide.net/node/view/538047/bgimage, and females have a reddish thorax https://bugguide.net/node/view/1158066/bgimage, and both have a ring of tiny spines on their front tibias.  A long “nose” (rostrum) that is about as long as the antennae, and extended mouthparts that are about three times as long are key characteristics for the species.  Curious about how Dilophus stigmaterus lives its life?  The BugLady is, too, but other than a very detailed anatomical description of the species written by WL McAtee in 1922, and the fact that they’ve been recorded nectaring on Boneset, she couldn’t find anything else about them.  Remember – according to the Smithsonian, there are around 91,000 described species of insects in the US and probably another 73,000 waiting to be discovered/described.  While they all do their bit to make the world go ‘round, many do so very unobtrusively. 

Kate Redmond, The BugLady

Bug of the Week archives:
http://uwm.edu/field-station/category/bug-of-the-week/

Bug o’the Week – Wildflower Watch – Swamp Milkweed

Bug o’the Week
by Kate Redmond

Bug o’the Week Wildflower Watch – Swamp Milkweed

Howdy, BugFans,

The BugLady is already fantasizing about warm, sunny days in a wetland, photographing Swamp milkweed (and dragonflies), because she loves its color, and she loves being in wetlands, and because it’s a very busy plant, indeed!

Also called rose or red milkweed (there are a couple of species of southern milkweeds that are also called red milkweed), white Indian hemp, water nerve-root, and water silkweed, Swamp milkweed prefers damp soils and full sun near the water’s edge.

Indians, and later, the European settlers, used it medicinally (a tea made from the roots was reputed to “drive the worms from a person in one hour’s time”).  It was used with caution – its sap is poisonous – and the cardiac glycosides that protect Monarchs also deter mammals from grazing on all but the very young plants.  The fibers in its stem were twisted into rope and twine and were used in textiles.

Its flowers are typical milkweed flowers – a corona of five parts (hoods) with curved petals below and curved, nectar-secreting horns above.  The flowers are tricky – sticky, golden, saddlebag-shaped pollinia are hidden behind what one author calls a trap door (a stigmatic slit).  Insects walk around on the flower head, and when one of their feet slips through the slit by chance, a pollinium sticks to it.  When the bug encounters a stigmatic slit on the next plant it visits, the pollen is inadvertently delivered.  A quick-and-dirty, pick-up and delivery is what the plant had in mind; but, like the story of the raccoon (or was it a monkey) that reaches into the jar for a candy bar and then can’t pull its fist out of the small opening, sometimes the insect’s foot gets stuck to pollinia inside the trap door.  Insects that can’t free themselves will die dangling from the flower, and insects that escape may be gummed up by the waxy structures.  Look carefully for pollinia in the pictures.

Milkweeds support complex communities of invertebrates – their nectar attracts ants, bugs, beetles, flies, butterflies, moths, bees, and wasps, plus predators looking for a meal.  Here are some of the insects that the BugLady sees on Swamp milkweed.

TWO-BANDED PETROPHILA MOTHS (Petrophila bifascialis) are delicate moths that lead a double life.  By day, they sit sedately on streamside vegetation.  By night, the female crawls down the side of a rock into the water – sometimes several feet down – to deposit her eggs on the stream bottom, breathing air that she brings with her, held against her ventral surface (“Petrophila” means “rock-lover”).  Her larvae eventually attach themselves to a rock and spin a net to keep themselves there, feeding on diatoms and algae that they harvest from the rock’s surface with their mandibles. 

MULBERRY WING SKIPPER – A small (one-inch-ish wingspan) butterfly of wetlands with an arrow or airplane-shaped marking on its rich, chestnut-brown underwings (the upper surface of its wings looks completely different https://bugguide.net/node/view/34033/bgimage.  Adults fly slowly through low vegetation, where females lay their eggs on the leaves of sedges. 

FLOWER LONGHORN BEETLE BRACHYLEPTURA CHAMPLAINI (no common name), on a Swamp milkweed leaf.  Other than a “present” checkoff in a variety of natural area insect surveys, there’s just about nothing online about this beetle, and not much more in Evans’ book, Beetles of Eastern North America.  It’s a long-horned beetle in the Flower longhorn subfamily Lepturinae, a group that feeds on pollen in the daytime.  This one has pollinia on its mouthparts.

AMBUSH BUG – The dangling bee in this picture did not fall victim to the sticky pollinia (though it has plenty of them on its legs).  A well-camouflaged ambush bug snagged it as it visited the flower. 

SOLDIER BEETLE – These guys drive the BugLady crazy.  They’re lightning beetle mimics, and they’re pretty good at it, and she always overthinks the ID.  She doesn’t know why they’re imitating the closely-related lightning beetles – alarmed lightning beetles discharge poisonous blood/hemolymph from their leg joints, but alarmed soldier beetles do, too. 

CRAB SPIDER –This Goldenrod crab spider tucked itself down between the milkweed flowers and ambushed an Odontomyia soldier fly https://bugguide.net/node/view/417289/bgimage.

LARGE MILKWEED BUG – What a beauty!  Large milkweed bugs are seed bugs – they feed by poking their beaklike mouthparts through the shell of a milkweed pod and sucking nutrients from the seeds.  They don’t harm the plant (just the seed crop), and they don’t harm monarch caterpillars, either.  Like other milkweed feeders, they sport aposematic (warning) colors to inform predators of their unpalatability.  Large milkweed bugs don’t like northern winters and are migratory – like monarchs, the shortening day lengths, the lowering angle of the sun, and increasingly tough milkweed leaves signal that it’s time to go, and they travel south to find fresher greens.  Their descendants head north in spring.

MONARCH CATERPILLAR – Common milkweed and Swamp milkweed are Monarch butterflies’ top picks for egg laying. 

GREAT-SPANGLED FRITILLARY – The other big, orange butterfly.  Adults enjoy milkweeds and a variety of other wildflowers, and their caterpillars feed on violets – if they’re lucky enough to connect with some.  Females lay eggs in fall, near, but not necessarily on, violets, and the caterpillars emerge soon afterward.  They drink water but they don’t eat; they aestivate through winter in the leaf litter and awake in spring to look for their emerging host plants.

GIANT SWALLOWTAIL – A southern butterfly that seems to be getting a foothold in Wisconsin.  The book says they are annual migrants that produce a generation here in summer and that their caterpillars can’t tolerate Wisconsin winters, but the BugLady has seen very fresh-looking Giant Swallowtails here in May that didn’t look like they had just been on a long flight.  Their caterpillars are called Orange Dogs in the South, because their host plants are in the Rue/Citrus family Rutaceae.  In this neck of the woods, females lay their eggs on Prickly ash, a small shrub that’s the northernmost member of that family. 

CINNAMON CLEARWING MOTH – A nectar-sipper but, since it doesn’t land, not a serious pollinator.

NORTHERN PAPER WASP – Butterflies love Swamp Milkweed, and so do wasps.  The Northern paper wasp is the social wasp that makes a smallish (usually fewer than 200 inhabitants) open-celled, down-facing, stemmed nest https://bugguide.net/node/view/1411890/bgimage.  “Northern” is a misnomer – they’re found from Canada through Texas and from the Atlantic well into the Great Plains.  Her super power is chewing on cellulose material, mixing it with saliva, and creating paper pulp.  She may be on the swamp milkweed to get pollen and nectar for herself or to collect small invertebrates to feed to the colony’s larvae.  Curious about Northern paper wasps?  See https://bugeric.blogspot.com/2010/09/wasp-wednesday-northern-paper-wasp.html.

Also seen were ants, leafcutter bees, sweat bees, Great black wasps, Great golden digger wasps, Red soldier beetles, Fiery and Broad-winged Skipper butterflies, and Thick-headed flies.  

Kate Redmond, The BugLady

Bug of the Week archives:
http://uwm.edu/field-station/category/bug-of-the-week/

Bug o’the Week – And Now for Something a Little Different XV – Royal Catchfly

Bug o’the Week
by Kate Redmond

Bug o’the Week And Now for Something a Little Different XV Royal Catchfly

Greetings, BugFans,

The BugLady had a long overdue “Oh Duh!!!”moment recently when BugFan Freda asked her if she realized why Royal Catchfly flowers were named Catchfly. Nope – hadn’t thought about it (insufficient scholarship).

Freda had just discovered, to her horror, that she might be aiding and abetting pollinator murder. Did the BugLady know that the Royal Catchfly was, in fact, a pollinator deathtrap? She had planted a small patch of native wildflowers in order to attract pollinators, and while she was admiring the Catchfly’s beautiful red flowers, she noticed a dead bumblebee. She took a closer look and saw a dead honeybee, one very much alive honeybee that was completely stuck and was trying to pull free from the sticky plant, and a small leafcutter bee that was in the same predicament (and when she gently pried a bee out of the glue, it remained so sticky that it couldn’t fly). There were at least two dead, and two dying bees in her pollinator patch.

Thanks, Freda, for the question (and for most of the pictures).

First off, what’s a Royal Catchfly?  It’s a brilliantly red, native wildflower in the Pink/Carnation family Caryophyllaceae and in the large genus Silene.  Silene is a complicated genus, and various aspects including its genetics, speciation, and the complicated reproductive strategies of some species have been studied for a long time.  Varieties of Silene are planted in perennial gardens and sold by florists, and some, like the non-native Bladder campion (Silene vulgaris) are eaten https://www.minnesotawildflowers.info/flower/bladder-campion.   

Royal catchfly is historically a plant of prairies, savannahs, woodland openings, roadside edges, and railroad rights-of-way, and today it’s considered widespread, but patchily distributed.  Over much of its range, which lies from Kansas and Oklahoma to Ohio, down to northern Florida, it’s considered to be Rare, Endangered or Threatened, and it’s been extirpated (driven locally extinct) from a few states due to habitat loss, invasive plant thuggery, shade, lack of fires, and humans with shovels.

Royal catchfly (Silene regia), and a number of other Silene species, are called “catchfly” because they catch flies.  They are adorned with sticky, gluey hairs (glandular trichomes) on the calyx (the green “vase” that’s formed by the sepals at the base of the flower) and on the upper stems.  The calyxes of older flowers that have shed their petals are a bit tacky, but not actively gluey like the younger flowers, and the leaves are fuzzy but not sticky.    

The sticky hairs (and some stiff, downward-pointing hairs toward the bottom of the plant) are very effective in stopping insects that might try to climb up the stem toward the flower (though one author had seen some aphids and their guardian ants navigating the stems).  They’re equally effective in deterring “nectar robbers” – insects like bumble bees whose tongues aren’t long enough to reach the nectar prize from the top of the flower, so they chew their way through the calyx from the side, sip the nectar, and don’t do any pollinating at all.  One author says that the plant is “selecting for” airborne pollinators,” the chief of which is the Ruby-throated hummingbird, though moths with long proboscises that hover in front of the tubular flower could get away with it, as can swallowtail butterflies.  Insects can’t see the color red (hummingbirds can), and apparently, although many insects can see ultra-violet light, a UV image of Royal catchfly doesn’t reveal any insect “come hither” signals.   

What happens after the bugs get caught? 

The logical leap is that having gone through the effort of catching them (producing the hairs requires an energy investment from the plant, after all) the catchfly uses them.  Some sources speculated that this kind of insect entrapment might be a step toward an eventual life of carnivory and wondered if the catchfly had any way to absorb the nutrients in its victims, like a sundew does.  In his Master’s Thesis in 2017, Garrett John Dienno held up two yardsticks to measure the Royal catchfly’s possible carnivory: “1) whether S. regia actively attracts, captures, and retains prey, and/or secretes digestive enzymes to facilitate nutrient absorption; and (2) whether it absorbs and translocates the resultant nutrients.”  Spoiler alert – No and No.  There is no insect-attracting nectar and no UV signal, and the glandular hairs do not secrete any digestive enzymes.  He concluded that “Instead, we propose the glandular trichomes on the S. regia calyx provide a passive defensive benefit to the flowers and seeds by protecting the very structures that are supporting their development.” 

The published word on the catchflies is a bit murky, though, and there’s some just plain bad information out there.  One otherwise respectable plant nursery noted that Royal catchfly comes from a carnivorous family (possibly the same nursery that once claimed that Cup Plant (https://www.illinoiswildflowers.info/prairie/plantx/cupplantx.htm) digests the insects that drown in the water pools formed by their perfoliate leaves).  The Pink family Caryophyllaceae is not known for carnivory, but the Order it’s in, Caryophyllales (a much bigger umbrella) does include some families with carnivorous plants (it also contains cacti and beets).  What a difference a few letters make!

A number of nursery catalogs and other publications state that because having small, rotting insects stuck to their stems would be unhealthy for Royal Catchflies, the plants get rid of the bodies by secreting enzymes that break them down before they “get putrid.”  Self-preservation rather than nutrition.  Way back in 1876, a Professor W. J. Beal wrote about a related plant that “We need not necessarily suppose that they are digested because they are captured by sticky plants.”  

A gardening site’s description of the related and equally sticky Night-flowering catchfly, which is pollinated by moths, said that “When the moth touches the plant it finds that it cannot get away easily and so is more likely to get covered in pollen, or release any pollen it is already carrying, as it tries to break free. This it will do, because the plant is not insectivorous and is only interested in temporary prisoners rather than permanent ones.”  So, happily, the plant’s intent is not to harm it.  

One nursery suggested that the stuck bugs might provide a feast for insectivorous birds.  The BugLady can picture the hummingbirds that come for nectar noticing the stuck insects and picking them off the plant (small insects are a regular part of their diets) but she can’t picture sparrows or chickadees doing that.  It’s possible that long-legged insects like wasps and yellowjackets, which forage for protein for their larvae, might check the catchfly’s offerings.

The British are not immune to this silliness.  Back in 2009, Scientists from the Royal Botanic Gardens, Kew and the Natural History Museum concluded that petunias, potatoes, and several other common plants were meat eaters – or at least on the way to being meat-eaters.  Why?  Because they have sticky hairs that trap bugs.  After making a big splash on both sides of the Pond, they walked it back a bit.  “However, some of the commonly accepted carnivores [like petunias] have not been demonstrated to have the ability to digest the insects they trap or to absorb the breakdown products.” 

They went on to say “Professor Mark Chase, Keeper of the Jodrell Laboratory at the Royal Botanic Gardens, Kew says, ‘…. many commonly grown plants may turn out to be cryptic carnivores, at least by absorbing through their roots the breakdown products of the animals that they ensnare. We may be surrounded by many more murderous plants than we think.’”  Nice save?

There’s a reason why scientists submit papers for peer review.

(The BugLady is reminded of Nathaniel Hawthorne’s short story “Rappaccini’s Daughter.”)

Kate Redmond, The BugLady

Bug of the Week archives:
http://uwm.edu/field-station/category/bug-of-the-week/

Become a Member

Take advantage of all the benefits of a Riveredge membership year round!

Learn More